Local density of states and scanning tunneling currents in graphene
نویسندگان
چکیده
We present exact analytical calculations of scanning tunneling currents in locally disordered graphene using a multimode description of the microscope tip. Analytical expressions for the local density of states (LDOS) are given for energies beyond the Dirac cone approximation. We show that the LDOS at the A and B sublattices of graphene are out of phase by π implying that the averaged LDOS, as one moves away from the impurity, shows no trace of the 2qF (with qF the Fermi momentum) Friedel modulation. This means that a STM experiment lacking atomic resolution at the sublattice level will not be able of detecting the presence of the Friedel oscillations [this seems to be the case in the experiments reported in Phys. Rev. Lett. 101, 206802 (2008)]. The momentum maps of the LDOS for different types of impurities are given. In the case of the vacancy, 2qF features are seen in these maps. In all momentum space maps, K and K + K ′ features are seen. The K + K ′ features are different from what is seen around zero momentum. An interpretation for these features is given. The calculations reported here are valid for chemical substitution impurities, such as boron and nitrogen atoms, as well as for vacancies. It is shown that the density of states close to the impurity is very sensitive to type of disorder: diagonal, non-diagonal, or vacancies. In the case of weakly coupled (to the carbon atoms) impurities, the local density of states presents strong resonances at finite energies, which leads to steps in the scanning tunneling currents and to suppression of the Fano factor.
منابع مشابه
Computational study of bandgap-engineered Graphene nano ribbon tunneling field-effect transistor (BE-GNR-TFET)
By applying tensile local uniaxial strain on 5 nm of drain region and compressive local uniaxial strain on 2.5 nm of source and 2.5 nm of channel regions of graphene nanoribbon tunneling field-effect transistor (GNR-TFET), we propose a new bandgap-engineered (BE) GNR-TFET. Simulation of the suggested device is done based on non-equilibrium Green’s function (NEGF) method by a mode-space approach...
متن کاملA THEORY OF VACUUM TUNNELING MICROSCOPY1
A theory for tunneling between a real surface and a model probe tip, applicable to the "scanning tunneling microscope" is presented. The tunneling current is found to be proportional to the local density of states of the surface, at the position of the tip. It can be shown that the tunneling conductance has exponential dependence on the distance of the nearest approach to the surface
متن کاملLong-wavelength local density of states oscillations near graphene step edges.
Using scanning tunneling microscopy and spectroscopy, we have studied the local density of states (LDOS) of graphene over step edges in boron nitride. Long-wavelength oscillations in the LDOS are observed with maxima parallel to the step edge. Their wavelength and amplitude are controlled by the energy of the quasiparticles allowing a direct probe of the graphene dispersion relation. We also ob...
متن کاملScanning tunneling spectroscopy of epitaxial graphene nanoisland on Ir(111)
Scanning tunneling spectroscopy (STS) was used to measure local differential conductance (dI/dV) spectra on nanometer-size graphene islands on an Ir(111) surface. Energy resolved dI/dV maps clearly show a spatial modulation, which we ascribe to a modulated local density of states due to quantum confinement. STS near graphene edges indicates a position dependence of the dI/dV signals, which sugg...
متن کاملThe Local Density of States in Monolayer and Bilayer Graphene in the Presence of an Impurity
We analyze the effect of a single localized impurity on the local density of states in monoand bilayer undoped graphene. We show that for monolayer graphene the Friedel oscillations generated by intranodal scattering of quasiparticles obey an inverse-square law, while those generated by internodal scattering obey an inverse law. Unlike the former, the latter oscillations may break rotational sy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009